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Abstract

It is shown that the set of all I-element collections of

interdependent homography matrices describing homogra-

phies induced by I planes in the 3D scene between two

views has dimension 4I + 7. This improves on an earlier

result which gave an upper bound for the dimension in ques-

tion, and solves a long-standing open problem. The signif-

icance of the present result lies in that it is critical to the

identification of the full set of constraints to which collec-

tions of interdependent homography matrices are subject,

which in turn is critical to the design of constrained op-

timisation techniques for estimating such collections from

image data.

1. Introduction

The estimation of a single homography matrix from im-

age measurements is an important step in 3D reconstruc-

tion, mosaicing, camera calibration, metric rectification and

other tasks [6]. For some applications, like non-rigid mo-

tion detection [9, 7] for instance, a whole array of homogra-

phy matrices, all intrinsically interconnected, are required.

The matrices must satisfy the consistency constraints im-

plied by the rigidness of the motion and the scene. One

of the fundamental problems in estimating multiple homog-

raphy matrices is to find a way to enforce these underly-

ing consistency constraints—a task reminiscent of that of

enforcing the rank-two constraint in the case of the funda-

mental matrix estimation [6].

As a rule, the consistency constraints are available only

in implicit form. The conventional approach for dealing

with such constraints is to evolve a derivative family of ex-

plicit constraints. These new constraints are typically more

relaxed than the original ones. Adhering to this methodol-

ogy, Shashua and Avidan [8] found that homography ma-

trices induced by four or more planes in a 3D scene ap-

pearing in two views span a 4-dimensional linear subspace.

Chen and Suter [2] derived a set of strengthened constraints

for the case of three or more homographies in two views.

Zelnik-Manor and Irani [9] have shown that another rank-

four constraint applies to a set of so-called relative homo-

graphies generated by two planes in four or more views.

These latter authors also derived constraints for larger sets

of homographies and views.

Once isolated, the explicit constraints can be put to use

in a procedure whereby first individual homography ma-

trices are estimated from image data, and then the result-

ing estimates are upgraded to matrices satisfying the con-

straints. Following this pattern, Shashua and Avidan as

well as Zelnik-Manor and Irani used low-rank approxima-

tion under the Frobenius norm to enforce the rank-four con-

straint. Chen and Suter enforced their set of constraints also

via low-rank approximation, but then employed the Maha-

lanobis norm with covariances of the input homographies.

All of these estimation procedures produce matrices that

satisfy only the derivative constraints so their true consis-

tency cannot be guaranteed.

The constraints can also be taken care of directly by re-

coursing to a parametrisation of the set of all intervening

homography matrices. Following this path, Chojnacki et al.

[3] employed a specific parametrisation and a specific cost

function to develop an upgrade procedure based on uncon-

strained optimisation. While all implicit constraints were

enforced in this way, there remained the problem of finding

a good initialisation for the underlying iterative optimisa-

tion scheme. One alternative to the initialisation procedure

proposed in [3] involves the application of a computation-

ally efficient and statistically accurate constrained optimisa-

tion technique. To devise such a method, however, one first

needs to identify all the explicit constraints.

The present paper, theoretical in nature, is a step towards

the identification of these explicit constraints. Its main con-

tribution is in revealing the dimension of the set of all in-

terdependent homography matrices in the case when the

homographies described by these matrices are induced by

multiple planes in a rigid 3D scene in two views. As an im-

mediate consequence, the number of explicit constraints is

also derived. It is a matter of further work to exploit this

latter information to delineate the constraints explicitly.
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2. Prerequisites

We start with some prerequisites necessary for establish-

ing our main result. These will include a presentation of a

specific way in which sets of homography matrices will be

organised, and basic background material concerning the

concept of dimension.

2.1. Multi-homography matrices

Hereafter we shall consider exclusively the case of ho-

mographies induced by multiple planes in the 3D scene be-

tween two views. In our analysis, it will prove convenient

to convert sets of interdependent homography matrices into

specific matrices. These matrices will be different from the

horizontal or vertical concatenations of the individual ho-

mography matrices forming each set.

Denote byR the set of real numbers and byRm×n the set

of real m×n matrices. Suppose that P1 = [I3,0] and P2 =
[A,−b] are two fixed camera matrices. Here I3 is the 3× 3
identity matrix, 0 is the length-3 zero vector, A ∈ R

3×3,

and b ∈ R
3. Suppose, moreover, that a set of I planes in

a 3D scene have been selected. Given i = 1, . . . , I , let the

i-th plane from this set be characterised by a length-4 vector

[vT

i , wi]
T with vi ∈ R

3 and wi ∈ R. For each i = 1, . . . , I ,

the i-th plane gives rise to a planar homography H i from

view P2 to view P1 described by the 3× 3 matrix

Hi = wiA+ bvT

i .

For each i = 1, . . . , I , let hi = vec(Hi), where vec denotes

column-wise vectorisation, and let H be the 9 × I matrix

given by

H = [h1, . . . ,hI ].

Henceforth any H = H(A,b,v1, . . . ,vI , w1, . . . , wI) of

this form will be referred to as a multi-homography matrix.

The set of all multi-homography matrices will be denoted

by H.

2.2. Dimension

There are various concepts of dimension used in mathe-

matics, not all of them equivalent. Intuitively, the dimension

of a set is the least number of parameters needed to locally

describe this set. Here we shall use the notion of dimension

for semi-algebraic sets. A semi-algebraic set is a subset of

the real n-dimensional space R
n which can be written as

a finite union of subsets defined by a finite conjunction of

polynomial equalities and inequalities. Our interest in semi-

algebraic sets stems from the link between such sets and the

polynomial images of Rn.

Given positive integers m and n, a map f =
[f1, . . . , fn]

T : Rm → R
n is said to be polynomial if the

functions fi are polynomials in x1, . . . , xm. The celebrated

Tarski-Seidenberg theorem [1] ensures that the image of any

Figure 1. Plot of a portion of the variety x
2 − y
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polynomial map f : Rm → R
n is a semi-algebraic subset

of Rn.

Some semi-algebraic sets are smooth manifolds and

some are not. Consider, for example, the image in R
3 of

R
2 by the polynomial map

[t, u]T �→ [t(u2 − t2), u, u2 − t2]T.

It coincides with the variety x2−y2z2+z3 = 0. This variety

is not a smooth manifold because, locally, at each point of

the y-axis other than the origin, the surface looks like the

intersection of two smooth manifolds—see Figure 1.

Any semi-algebraic set is locally, on a dense open subset,

a submanifold embedded in the ambient space, and thus not

necessarily a manifold. One can define the dimension of a

semi-algebraic set to be the largest dimension at points at

which it is a submanifold.

3. Main result

As it turns out, our set of interest H is a polynomial

image of R
4I+12 (see Section 4.1 for a full explanation).

Consequently, H is semi-algebraic and one can speak about

its dimension. Our main result is that the dimension of H
is equal to 4I + 7. We shall split the argument justifying

this result into two parts, corresponding to two inequalities:

dimH ≤ 4I + 7 and dimH ≥ 4I + 7. The first inequality

has already surfaced in the literature [4], but the derivation

of it that we present here is in some aspects new. The second

inequality is novel and constitutes the main contribution of

the paper.

4. Upper dimension bound

We first show that dimH ≤ 4I + 7. With a view to

gaining some historical perspective, we start by presenting

some weaker bounds obtained earlier and only then do we

derive the ultimate bound.
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4.1. Initial upper bounds

Any multi-homography matrix H is naturally expressed

in terms of an array of parameters

ω = (A,b,v1, . . . ,vI , w1, . . . , wI),

where A ∈ R
3×3, b ∈ R

3, vi ∈ R
3, and wi ∈ R. More

specifically, if Π(ω) is the 3× 3I matrix given by

Π(ω) = [Π1(ω), . . . ,ΠI(ω)],

where

Πi(ω) = wiA+ bvT

i (1)

for each i = 1, . . . , I , then

H = r(Π(ω)). (2)

Here r denotes the mapping

[M1, . . . ,MI ] �→ [vec(M1), . . . , vec(MI)].

When the Mi are 3× 3 matrices, r(·) can be identified with

MATLAB’s reshape(·, 9, I) operator. While the array ω

has entries of different types, it can always be reshaped to a

length-(4I + 12) vector, for example

[vec(A)T,bT,vT

1 , . . . ,v
T

I , w1, . . . , wI ]
T,

and be viewed as an element of R4I+12. Consequently, the

set Ω of all arrays ω as above has dimension 4I + 12. As

the dimension of the set of multi-homography matrices is no

bigger than the dimension of its associated set of parameter

arrays, it immediately follows that dimH ≤ 4I + 12.

This estimate can be further refined to the inequality

dimH ≤ 4I + 10 [2]. Indeed, since, with a = vec(A),

hi = wi vec(A) + vec(bvT

i ) = wia+ (I3 ⊗ b)vi, (3)

it follows that

H = H′ +H′′,

where

H′ = [w1a, . . . , wIa] = awT , w = [w1, . . . , wI ]
T

and

H′′ = [(I3 ⊗ b)v1, . . . (I3 ⊗ b)vI ] = (I3 ⊗ b)V,

V = [v1, . . . ,vI ].

Clearly, H′ is a rank-one 9 × I matrix. Corresponding to

H′′, define a 3× 3I matrix H′′
0 by

H′′

0 = [bvT

1 , . . . ,bv
T

I ] = b[vT

1 , . . . ,v
T

I ].

The factorisation in the rightmost term shows that H ′′
0 has

rank one. Now, H′′ = r(H′′
0 ), and so

H = H′ + r(H′′

0 ).

Denote by R
m×n
k the set of real m × n matrices of rank

at most k. It is well known that Rm×n
k is a k(m + n −

k)-dimensional variety in R
m×n [5]. Given that R9×I

1 and

R
3×3I
1 to which H′ and H′′

0 belong, respectively, have their

corresponding dimensions equal to I+8 and 3I+2, H can

be expressed in terms of (I + 8) + (3I + 2) = 4I + 10
parameters. Thus dimH ≤ 4I + 10.

4.2. Ultimate upper bound

A still better, in fact optimal, upper estimate of the di-

mension of H is dimH ≤ 4I + 7 [4]. We shall derive

it by exploiting the fact there are many different param-

eter arrays describing the same multi-homography matrix.

Our derivation will pursue a slightly different path than that

taken in [4].

For each matrix

C =

⎡

⎢

⎢

⎣

α 0 0 c1
0 α 0 c2
0 0 α c3
0 0 0 β

⎤

⎥

⎥

⎦

where α ∈ R, β ∈ R and c = [c1, c2, c3]
T ∈ R

3, let τC be

the transformation of Ω into itself given by

τC(ω) = (βA+ bcT, αb,

α−1v1 − α−1β−1c, . . . , α−1vI − α−1β−1c,

β−1w1, . . . , β
−1wI).

With the matrix composition as group operation and with

the 4× 4 identity matrix I4 as neutral element, the set G of

all matrices C as above is a group. Denote by Aut(Ω) the

set of all one-to-one transformations of Ω. Under the com-

position of mappings as group operation and with the iden-

tity mapping of Ω as neutral element, Aut(Ω) is a group.

It is readily verified that the function τ : C �→ τC maps G
into Aut(Ω) (so that each τC is a bijection) and is a homo-

morphism:

τCτC′ = τCC′ , τ−1

C
= τC−1

for any C,C′ ∈ G. The critical property of the τC’s is

that any of these transformations leaves all the homography

matrices unchanged:

Π(τC(ω)) = Π(ω)

for each ω ∈ Ω. Thus the τC’s constitute a group of in-

ternal symmetries related to the freedom of choice of pa-

rameter arrays. The fact that τ is a homomorphism can

be phrased as saying that τ is a representation of G in the

gauge group. The latter group comprises all transforma-

tions γ in Aut(Ω) such that Π(γ(ω)) = Π(ω) for each

ω ∈ Ω. Under the equivalence relation in which ω,ω ′ ∈ Ω
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are regarded as equivalent whenever ω ′ = τC(ω) for some

C ∈ G, the set Ω is partitioned into classes of intrinsically

equivalent parameter arrays, each class representing exactly

one underlying multi-homography matrix. Consequently,

dimH ≤ dimΩ− dimG = (4I + 12)− 5 = 4I + 7.

5. Lower dimension bound

Here we show that dimH ≥ 4I + 7. This together

with the last result of the previous section will imply that

dimH = 4I + 7. The lower bound on the dimension

of H is obtained through analysis of the linearisation of

a specific parametrisation of H. The use of a differential

method makes the highly non-linear problem of determin-

ing redundancies in parametrisation amenable to a simpler,

linear technique.

Let Ω0 be the set of those ω in Ω for which

‖b‖2 = bTb = 1. (4)

As pointed out earlier, Ω is essentially identical to the Eu-

clidean space R
4I+12. Accordingly, Ω0 can be viewed as a

hypersurface in R
4I+12. Consider the restriction Π̄ of the

map Π to Ω0,

Π̄ : Ω0 → R
3×3I , Π̄(ω) = Π(ω) for ω ∈ Ω0.

Note that the image Π̄(Ω0) of Ω0 by Π̄ is identical to

the image Π(Ω) of Ω by Π. Indeed, given ω ∈ Ω, the

right-hand side of (1) does not change if ω is replaced by

ω0 ∈ Ω0 defined as the modification of ω in which ‖b‖−1b

is substituted for b and, for each i = 1, . . . , I , ‖b‖vi is sub-

stituted for vi, the rest of the entries of ω remaining unal-

tered. Now, Π̄(Ω0) coincides with the image r−1(H) of H
by the inverse mapping r−1 to r—see (2). As r is a one-to-

one mapping, it and its inverse do not change the dimension

of sets that they transform. In particular,

dimH = dim r−1(H) = dim Π̄(Ω0).

Thus to complete the argument, it suffices to show that

dim Π̄(Ω0) ≥ 4I + 7.

Let dΠ̄ω denote the differential of Π̄ at ω. When a

particular local parametrisation σ for Ω0 is chosen with

p ∈ R
4I+11 satisfying σ(p) = ω, dΠ̄ω can be identified

with the Jacobian matrix of the composite mapping Π̄ ◦ σ
at p. For a given linear map A, let R(A) and N (A) denote

the range and null spaces of A, respectively. The dimen-

sion of Π̄(Ω0) is the same as the dimension of R(dΠ̄ω)
at a generic ω; this is basically because the dimension of a

manifold is the same as the dimension of the tangent space

to the manifold at any particular point. On the other hand,

dimN (dΠ̄ω) + dimR(dΠ̄ω) = dimTω(Ω0),

where Tω(Ω0) denotes the tangent space of Ω0 at ω. At the

level of the Jacobian matrix, this is just an instance of the

rank-nullity result of linear algebra saying that the nullity

(the dimension of the null of space) and the rank of a matrix

add up to the number of columns of the matrix. The dimen-

sion of Tω(Ω0) equals the dimension of Ω0 and this, in view

of the constraint (4), equals 4I + 11, one less than the di-

mension of Ω. Thus to establish that dim Π̄(Ω0) ≥ 4I + 7
we need only show that dimN (dΠ̄ω) ≤ 4 at a generic ω.

Let

δω = (δA, δb, δv1, . . . , δvI , δw1, . . . , δwI)

be a tangent vector to Ω0 at ω. In view of (4), we have

bTδb = 0. (5)

For δω to fall into the null space of dΠ̄ω , it is necessary

and sufficient that

d(Πi)ω(δω) = δwiA+ wiδA+ δbvT

i + bδvT

i = 0 (6)

for each i = 1, . . . , I . Assume that δω is in N (dΠ̄ω) so

that (6) holds. Pre-multiplying (6) by bT and using (4) and

(5) yields

δwib
TA+ wib

TδA+ δvT

i = 0. (7)

Pre-multiplying in turn this equation by b and subtracting

the resulting equation from (6) leads to

δwi(I3 − bbT)A+ wi(I3 − bbT)δA+ δbvT

i = 0.

The latter formula can be rewritten as

(I3 − bbT)(δwiA+ wiδA) + δbvT

i = 0, (8)

which upon post-multiplying by v i gives

(I3 − bbT)(δwiA+ wiδA)vi + δb‖vi‖
2 = 0.

Hence

δb = −(I3 − bbT)(δwiA+ wiδA)‖vi‖
−2vi. (9)

Plugging this expression for δb back into (8), we find that

(I3 − bbT)(δwiA+ wiδA)(I3 − ‖vi‖
−2viv

T

i ) = 0.

This can equivalently be restated as

(I3 − bbT)

(

δwi

wi

A− δA

)

P⊥

vi
= 0, (10)

where

P⊥

vi
= I3 − ‖vi‖

−2viv
T

i .

Generically, given a pair i and j of distinct indices, the

vectors vi and vj are linearly independent and their cross

product vi × vj is non-zero. Since

vT

i (vi × vj) = vT

j (vi × vj) = 0,
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we have

P⊥

vi
(vi × vj) = P⊥

vj
(vi × vj) = vi × vj .

In view of (10),

(I3 − bbT)

(

δwi

wi

A− δA

)

(vi × vj) = 0

and

(I3 − bbT)

(

δwj

wj

A− δA

)

(vi × vj) = 0.

Subtracting the second of these equations from the first, we

obtain

(

δwi

wi

−
δwj

wj

)

(I3 − bbT)A(vi × vj) = 0.

Generically, the vector (I3 − bbT)A(vi × vj) is non-zero,

so
δwi

wi

=
δwj

wj

.

In other words, the δwi/wi have a common value. Denote

this value by δλ. Then (10) can be rewritten as

(I3 − bbT)(δλA− δA)P⊥

vi
= 0. (11)

We now show that in fact

(I3 − bbT)(δλA − δA) = 0. (12)

It suffices to prove that

(I3 − bbT)(δλA− δA)x = 0 (13)

for each length-3 vector x. Choose two linearly inde-

pendent vectors from amongst the vi’s, say, v1 and v2.

As any length-3 vector is a linear combination of v1, v2,

and v1 × v2, (13) will be established once it is shown

that it holds for x equal to v1, v2, and v1 × v2. Since

P⊥
v1
(v1 × v2) = v1 × v2, it follows from (11) that

(I3 − bbT)(δλA − δA)(v1 × v2) =

(I3 − bbT)(δλA− δA)P⊥

v1
(v1 × v2) = 0,

so (13) holds in the case x = v1 × v2. Now

v1 =

(

1−
(vT

1v2)
2

‖v1‖2‖v2‖2

)−1 (

vT

2v1

‖v2‖2
P⊥

v1
v2 +P⊥

v2
v1

)

,

as direct verification shows. Using this representation to-

gether with (11) yields immediately

(I3 − bbT)(δλA− δA)v1 = 0.

By interchanging the roles of v1 and v2 in the above argu-

ment,

(I3 − bbT)(δλA − δA)v2 = 0.

Thus (13) also holds also in the cases x = v1 and x = v2.

As an immediate consequence of (12),

δA = bbTδA+ (I3 − bbT)δA

= bbTδA+ δλ(I3 − bbT)A.

Let δc be the length-3 vector defined by δc = δAb. Then

δA = b(δc)T + δλ(I3 − bbT)A, (14)

expressing δA linearly in terms of δc and δλ. The relation

δwi = wiδλ (15)

expresses δwi linearly in terms of δλ. Now (9) in which

δA and δwi are replaced by the right-hand sides of (14) and

(15), respectively, gives an expression for δb that is linear

in δc and δλ. Finally, (7) rewritten as

δvi = −δwiA
Tb− wi(δA)Tb

and combined with (14) and (15) as in the previous step

gives an expression for δvi that is linear in δc and δλ. Thus

all components of δω depend linearly on δc and δλ, which

shows that the null space of dΠ̄ω is at most four dimen-

sional.

We complete this section with a brief recapitulation of

the logic behind our main dimensionality result. The fact

that dimN (dΠ̄ω) ≤ 4 implies that dimR(dΠ̄ω) ≥ 4I+7,

and hence that dim Π̄(Ω0) ≥ 4I + 7. This in conjunc-

tion with the final result of Section 4 implies that dimH =
4I + 7.

6. Cardinality of the explicit constraints

The fact that dimH = 4I + 7 has an immediate impli-

cation as to the number of underlying explicit constraints.

This number is exactly equal to 5I − 7. It is calculated

as the difference between the dimension of the space of all

9× I matrices and dimH.

We note in passing that the bulk of the explicit con-

straints determining H as a subset of R9×I can easily be

identified in the case where I ≥ 5. In fact, using (3), we see

that any H satisfies

H = ST, (16)

where S is the 9× 4 matrix given by

S = [I3 ⊗ b, a]

and T is the 4× I matrix given by

T =

[

v1 . . . vI

w1 . . . wI

]

.
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Figure 2. Scheme of selection of minors.

It follows from (16) that, whenever I ≥ 4, H has rank at

most 4. In other words, H ⊂ R
9×I
4 for I ≥ 4, this be-

ing the rank-four constraint mentioned in the introduction.

Remembering that Rm×n
k is a k(m + n − k)-dimensional

variety in R
m×n, we realise that

dimR
9×I
4 = 4(9 + I − 4) = 4I + 20.

Thus—under the assumption that I ≥ 5—to determine

R
9×I
4 as a subset of R

9×I in a generic way, a set of

9I − (4I + 20) = 5I − 20 constraints is required.

One such set can be obtained by taking specific minor

determinants of H of order 5 for defining functions of the

constraints. We first pick the left upper minor of H of or-

der 5. We then select four more minors of H of order 5
by sliding down by one row at each new choice until the

last ninth row of H is reached, all this happening within the

range of the first four columns of H. At this stage five mi-

nors of H of rank 5 are extracted. We then repeat the whole

process starting this time with the upper minor of order 5
in the range between the second and sixth columns of H.

By additionally sliding down four times, another set of five

minors of H of order 5 is obtained. Continuing repeatedly

to slide down and shift to the right, we reach at the (I−4)th
round the last column of H, and after the final slide-down

the whole process halts. In this way, a total of 5(I − 4)
minors of H of order 5 is selected (see Figure 2).

With 5I−20 constraints determiningR9×I
4 exhibited, we

now need another 5I − 7 − (5I − 20) = 13 constraints to

finally determine H. Intriguingly, this number of remaining

constraints does not depend on the value of I .

7. Conclusion and future work

In this paper we have revealed the dimension of the set

of all collections of interdependent homography matrices in

the case when the homographies described by these matri-

ces are induced by a fixed number of multiple planes in the

3D scene between two views. The number of the underlying

explicit constraints has also been exhibited. Future work in-

cludes generalising these results to the case of collections of

homography matrices induced by multiple planes between

more than two views. Most interesting, however, is finding

an avenue through which to specify the explicit constraints

completely and succinctly.

Acknowledgement

This research was supported by the Australian Research

Council.

References

[1] J. Bochnak, M. Coste, and M.-F. Roy. Real Algebraic Geom-

etry. Springer, Berlin, 1998. 2

[2] P. Chen and D. Suter. Rank constraints for homographies over

two views: revisiting the rank four constraint. Int. J. Computer

Vision, 81(2):205–225, 2009. 1, 3

[3] W. Chojnacki, Z. L. Szpak, M. J. Brooks, and A. van den Hen-

gel. Multiple homography estimation with full consistency

constraints. In Proc. Digital Image Computing: Techniques

and Applications Conf., pages 480–485, 2010. 1

[4] A. Eriksson and A. van den Hengel. Optimization on the man-

ifold of multiple homographies. In Proc. IEEE 12th Int. Conf.

Computer Vision Workshops, pages 242–249, 2009. 2, 3

[5] J. Harris. Algebraic Geometry. Springer, New York, 1995. 3

[6] R. I. Hartley and A. Zisserman. Multiple View Geometry in

Computer Vision. Cambridge University Press, Cambridge,

2nd edition, 2004. 1

[7] O. Kähler and J. Denzler. Rigid motion constraints for track-

ing planar objects. In Proc. 29th DAGM Symposium, volume

4713 of Lecture Notes in Computer Science, pages 102–111,

2007. 1

[8] A. Shashua and S. Avidan. The rank 4 constraint in multiple

(≥ 3) view geometry. In Proc. 4th European Conf. Com-

puter Vision, volume 1065 of Lecture Notes in Computer Vi-

sion, pages 196–206, 1996. 1

[9] L. Zelnik-Manor and M. Irani. Multiview constraints on

homographies. IEEE Trans. Pattern Anal. Mach. Intell.,

24(2):214–223, 2002. 1

2109


